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Abstract. While the form factors and parton distributions provide separately the shape of the proton
in coordinate and momentum spaces, a more powerful imaging of the proton structure can be obtained
through quantum phase-space distributions. Here we introduce the Wigner-type quark and gluon dis-
tributions which depict a full-3D proton at every fixed Feynman momentum, like what is seen through
momentum(“color”)-filters. After appropriate reductions, the phase-space distributions are related to the
generalized parton distributions (GPDs) and transverse-momentum dependent parton distributions mea-
surable in high-energy experiments.

PACS. 12.90.+b proton structure – 13.60.Fz high-energy scattering

1 Introduction

In exploring the microscopic structure of matter, there are
two frequently-used approaches. First, the spatial distri-
bution of matter (or charge) in a system can be probed
through elastic scattering of electrons, or photons, or neu-
trons, etc. The physical quantity that one measures is the
elastic form (structure) factors which depend on three-
momentum transfer to the system. The Fourier transfor-
mation of the form factors provides direct information
on the spatial distributions. The well-known examples in-
clude the study of charge distribution in an atom and
the atomic structure of a crystal. The second approach
is designed to measure the population of the constituents
as a function of momentum, or the momentum distribu-
tion, through knock-out scattering. Here the well-known
examples include the nucleon distributions in nuclei mea-
sured through quasi-elastic electron scattering, and the
distribution of atoms in a quantum liquid probed through
neutron scattering. The scattering cross section sometimes
depends on the reaction dynamics which must be under-
stood before the momentum distribution can be extracted.

Both approaches are complementary, but bear similar
drawbacks. The form factor measurements do not yield
any information about the underlying dynamics of the
system such as the speed of the constituents, whereas the
momentum distribution does not give any information on
the spatial location of the constituents. More complete in-
formation about the microscopic structure lies in the cor-
relation between the momentum and coordinate spaces,
i.e., to know where a particle is located and, at the same
time, with what velocity it travels. This information is
certainly attainable for a classical system for which one
can define and study the phase-space distribution of the
constituents. For a quantum mechanical particle, however,

the notion of a phase-space distribution seems less use-
ful because of the uncertainty principle. Nonetheless, the
first phase-space distribution in quantum mechanics was
introduced by Wigner in 1932 [1], and many similar distri-
butions have been studied thereafter. These distributions
have been used for various purposes in very diverse areas
such heavy-ion collisions, quantum molecular dynamics,
signal analysis, quantum information, optics, image pro-
cessing, non-linear dynamics, etc.[2].

In this talk, we explore to what extent one can con-
struct physically interesting and experimentally measur-
able phase-space distributions in quantum chromodynam-
ics (QCD), and what information it contains about the
QCD parton dynamics [3]. To facilitate the construction,
we examine the uncertainty in the traditional interpreta-
tion of electromagnetic form factors due to relativity, and
analyze the physical content of the Feynman parton dis-
tributions in the rest frame of the proton. We then intro-
duce the phase-space Wigner distributions for the quarks
and gluons in the proton, which contain most general one-
body information of partons, corresponding to the full
one-body density matrix in technical terms. After inte-
grating over the spatial coordinates, one recovers the fa-
miliar transverse-momentum dependent parton distribu-
tions [4]. On the other hand, some reduced version of the
distributions is related, through a specific Fourier trans-
formation, to the generalized parton distributions (GPDs)
which have been studied extensively in the literature in re-
cent years [5]. Roughly speaking, a GPD is a one-body ma-
trix element which combines the kinematics of both elas-
tic form factors and Feynman parton distributions, and
is measurable in hard exclusive processes. Therefore, the
notion of phase-space distribution provides a new 3D in-
terpretation of the GPDs in the rest frame of the proton.
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Other interpretations of the GPD in the literature have
been made in the IMF and impact parameter space [6].

2 Relativity constraint on interpretation
of form factors and parton distributions

The electromagnetic form factors are among the first mea-
sured and mostly studied observables of the proton. They
are defined as the matrix elements of the electromag-
netic current between the proton states of different four-
momenta. Because the proton is a spin one-half particle,
the matrix element defines two form factors,

〈p2|jµ(0)|p1〉= Ū(p2)
{
F1(q2)γµ+F2(q2)

iσµνqν
2MN

}
U(p1) ,

(1)
where F1 and F2 are the well-known Dirac and Pauli form
factors, respectively, depending on the momentum trans-
fer q = p2 − p1, and U(p) is proton spinor normalized as
U(p)U(p) = 2MN .

Since the beginning, it has been known that the physi-
cal interpretation of the proton form factors is complicated
by relativistic effects [7]. Consider a system of size R and
massM . In relativistic quantum theory, the system cannot
be localized to a precision better than its Compton wave-
length 1/M . Any attempt to do this with an external po-
tential will result in creation of particle-antiparticle pairs.
As a consequence, the static size of the system cannot
be defined to a precision better than 1/M . If R � 1/M ,
which is the case for all non-relativistic systems, the above
is not a significant constraint. One can probe the internal
structure of the system with a wavelength (1/|q|) com-
parable to or even much smaller than R, but still large
enough compared to 1/M so that the probe does not in-
duce an appreciable recoil. A familiar example is the hy-
drogen atom for which RMH ∼ MH/(meαem) ∼ 105, and
the form factor can be measured through electron scatter-
ing with momentum transfer |q| � MH .

When the probing wavelength is comparable to 1/M ,
the form factors are no longer determined by the internal
structure alone. They contain also the dynamical effects
of Lorentz boosts because the initial and final protons
have different momenta. In relativistic quantum theory,
the boost operators involve nontrivial dynamical effects
which result in the proton wave function being different
in different frame (in the usual instant form of quantiza-
tion). Therefore in the region |q| ∼ M , the physical in-
terpretation of the form factors is complicated because of
the entanglement of the internal and the center-of-mass
motions in relativistic dynamics. In the limit |q| � M ,
the former factors depend almost entirely on the physi-
cal mechanism producing the overall change of the proton
momentum. The structural effect involved is a very small
part of the proton wave function (usually the minimal
Fock component only).

For the proton, MNRN ∼ 4. Although much less cer-
tain than in the case of the hydrogen atom, it seems still
sensible to have a rest-frame picture in terms of the elec-
tromagnetic form factors, so long as one keeps in mind that

equally justified definitions of the proton sizes can differ
by ∼ 1/MN (RNMN ). For example, the traditional defini-
tion of the proton charge radius in terms of the slope of
the Sachs form factor GE(q2) is 0.86 fm [8]. On the other
hand, if one uses the slope of the Dirac form factor F1
to define the charge radius, one gets 0.79 fm, about 10%
smaller.

Since relativity makes the interpretation of the elec-
tromagnetic form factors non-unique, the best one can do
is to choose one particular interpretation and work consis-
tently. For example, when extracting the proton charge ra-
dius from the Lamb shift measurements, one shall use the
same definition as from the electric form factor. The most
frequently-used definition is that of Sachs [8], but other
schemes are equally good and the scheme dependence dis-
appears in the limit MR → ∞. This is very much like
the renormalization scheme dependence of parton densi-
ties due to radiative corrections at finite strong coupling
constant αs. In this paper, we adopt the Sachs interpre-
tation of the form factors, which means that the spatial
distributions are defined to be the Fourier transformation
of the Breit frame matrix elements.

Parton distributions were introduced by Feynman to
describe deep-inelastic scattering. They have the simplest
interpretation in the IMF as the densities of partons in
the longitudinal momentum x. To construct the quantum
phase-space distributions for the quarks, we need an in-
terpretation of the Feynman densities in the rest frame.
This is because the IMF involves a Lorentz boost along
the z-direction which destroys the rotational symmetry of
the 3D space.

The physics of the Feynman quark distribution in the
rest frame is made more clear through the notion of the
spectral function (gauge-link omitted)

S(k) =
1

2p+

∫
d4ξeik·ξ〈p|Ψ(0)γ+Ψ(ξ)|p〉 . (2)

which is the dispersive part of the single-quark Green’s
function in the proton. The physical meaning of S(k) can
be seen from its spectral representation,

S(k) =
∑

n

(2π)4δ(4)(p − k − pn)〈p|Ψk|n〉γ+〈n|Ψ(0)|p〉/2p+

∼
∑

n

(2π)4δ(4)(p − k − pn)|〈n|Ψk+|p〉|2 (3)

where Ψk is a Fourier transformation of quark field Ψ(ξ):
It is the probability of annihilating a quark (or creating
an antiquark) of four-momentum k (three-momentum k
and the off-shell energy E = k0) in the proton, leading to
an “on-shell” state of energy-momentum pn = p− k. The
quark here is off-shell because if pn and p are both “on-
shell”, k2 �= m2

q in general. [That the partons are off-shell
are in fact also true in the IMF calculations.] Of course,
in QCD |n〉 is not in the Hilbert space, but the spectral
function itself is still a meaningful quantity.

Since the quarks are ultra-relativistic, Ψk contains both
quark and antiquark Fock operators. One cannot in gen-
eral separate quark and anti-quark contributions, unlike
in the non-relativistic systems in which only the parti-
cle or antiparticle contribute. In fact, if one expands the
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above expression, one finds pair creations and annihila-
tion terms. However, this is also true for the usual charge
density. Therefore we can speak of S(k) as a distribution
of vector charges and currents, but not a particle den-
sity. In nuclear physics where the non-relativistic dynam-
ics dominates, the proton spectral function in the nucleus
is positive definite and can be regarded as a particle den-
sity. The nuclear spectral function is directly measurable
through pick-up and knock-out experiments, in which E
and k are called the missing energy and missing momen-
tum, respectively (see for example [9]).

It is now easy to see that in the rest frame of the
proton, the Feynman quark distribution is

q(x) =
√

2
∫

d4k

(2π)4
δ(k0 + kz − xMN )S(k) . (4)

The x variable is simply a special combination of the
off-shell energy k0 and momentum kz. The parton dis-
tribution is the spectral function of quarks projected
along a special direction in the four-dimensional energy-
momentum space. The quarks with different k0 and kz

can have the same x, and moreover, the both x > 0 and
x < 0 distributions contain contributions from quarks and
anti-quarks.

3 Quantum phase-space distributions

Suppose we have a one-dimensional quantum mechanical
system with wave function ψ(x), the Wigner distribution
is defined as

W (x, p) =
∫
dηeipηψ∗(x− η/2)ψ(x+ η/2) , (5)

where we have set � = 1. When integrating out the coor-
dinate x, one gets the momentum density |ψ(p)|2, which
is positive definite. When integrating out p, the positive-
definite coordinate space density |ψ(x)|2 follows. For ar-
bitrary p and x, the Wigner distribution is not positive
definite and does not have a probability interpretation.
Nonetheless, for calculating the physical observables, one
can just take averages over the phase-space as if it is a
classical distribution

〈Ô(x, p)〉 =
∫
dxdpW (x, p)O(x, p) (6)

where the operators are ordered according to the Weyl
association rule. For a single-particle system, the Wigner
distribution contains everything there is in the quantum
wave function. For a many-body system, the Wigner dis-
tribution can be used to calculate the averages of all one-
body operators. Sign changes in the phase-space are a hint
that it carries non-trivial quantum phase information.

In QCD, the single-particle wave function must be re-
placed by (gauge-invariant) quantum fields, and hence it
is natural to introduce the Wigner operator,

ŴΓ (r, k) =
∫
d4ηeik·ηΨ(r − η/2)ΓΨ(r + η/2) , (7)

where r is the quark phase-space position and k the phase-
space four-momentum conjugated to the spacetime sepa-
ration η. Γ is a Dirac matrix defining the types of quark
densities because the quarks are spin-1/2 relativistic par-
ticles. Depending on the choice of Γ , we can have vector,
axial vector, or tensor density.

For non-relativistic systems for which the center-of-
mass is well-defined and fixed, one can define the phase-
space distributions by taking the expectation value of the
above Wigner operators in the R = 0 state. For the pro-
ton for which the recoil effect cannot be neglected, the
rest-frame state cannot be uniquely defined. Here we fol-
low Sachs, defining a rest-frame matrix element as that in
the Breit frame, averaging over all possible 3-momentum
transfers. Therefore, we construct the quantum phase-
space quark distribution in the proton as,

WΓ (r, k)=
1

2MN

∫
d3q

(2π)3
〈
q/2

∣∣∣ŴΓ (r, k)
∣∣∣ − q/2

〉
(8)

=
1

2MN

∫
d3q

(2π)3
e−iq·r

〈
q/2

∣∣∣ŴΓ (0, k)
∣∣∣ − q/2

〉
,

where the plane-wave states are normalized relativisti-
cally. The most general phase-space distribution depends
on seven independent variables.

The only way we know how to probe the single-particle
distributions is through high-energy processes, in which
the light-cone energy k− = (k0 − kz)/

√
2 is difficult to

measure, where the z-axis refers to the momentum direc-
tion of a probe. Moreover, the leading observables in these
processes are associated with the “good” components of
the quark (gluon) fields in the sense of light-cone quantiza-
tion [10], which can be selected by Γ = γ+, γ+γ5, or σ+⊥

where γ+ = (γ0 + γz)/
√

2. The direction of the gauge
link, nµ, is then determined by the trajectories of high-
energy partons traveling along the light-cone (1, 0, 0,−1)
[11,12]. Therefore, from now on, we restrict ourselves to
the reduced Wigner distributions by integrating out k−,

WΓ (r,k) =
∫

dk−

(2π)2
WΓ (r, k) , (9)

with a light-cone gauge link is now implied. Unfortunately,
there is no known experiment at present capable of mea-
suring this 6-dimensional distribution which may be called
the master or mother distribution.

Further phase-space reductions lead to measurable
quantities. Integrating out the transverse momentum of
partons, we obtain a 4-dimensional quantum distribution

f̃Γ (r, k+) =
1

2MN

∫
d3q

(2π)3
e−iq·r

∫
dη−

2π
eiη−k+

× 〈
q/2

∣∣Ψ(−η−/2)ΓΨ(η−/2)
∣∣ − q/2

〉
. (10)

The matrix element under the integrals is what defines
the GPDs. More precisely, if one replaces k+ by Feyn-
man variable xp+ (p+ = Eq/

√
2, proton energy Eq =√

M2 + q2/4 ) and η− by λ/p+, the reduced Wigner dis-
tribution becomes the Fourier transformation of the GPD
FΓ (x, ξ, t)
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fΓ (r, x) =
1

2MN

∫
d3q

(2π)3
e−iq·rFΓ (x, ξ, t) . (11)

In the present context, the relation between kinematic
variables are ξ = qz/(2Eq) and t = −q 2. Taking Γ =√

2γ+, Fγ+ is the same as that in [13]

Fγ+(x, ξ, t) (12)

=
dλ

2π
eiλx

〈
q/2

∣∣∣ψ(−λn/2)L
√

2γ+ψ(λn/2)
∣∣∣ − q/2

〉

which defines H(x, ξ, t) and E(x, ξ, t).
The phase-space function fγ+(r, x) can be used to con-

struct 3D images of the quarks for every selected Feynman
momentum x in the rest frame of the proton. These im-
ages provide the pictures of the proton seen through the
Feynman momentum (or “color” or x) filters. They also
may be regarded as the result of a quantum phase-space
tomography of the proton. We remind the reader again
that the Feynman momentum in the rest-frame sense is
a special combination of the off-shell energy and momen-
tum along z, namely E + kz. Integrating over the z coor-
dinate, the GPDs are set to ξ ∼ qz = 0, and the result-
ing two-dimensional density fγ+(r⊥, x) is just the impact-
parameter-space distribution [6]. Further integration over
r⊥ recovers the usual Feynman parton distribution.

The physical content of the above distribution is fur-
ther revealed by examining its spin structure. Working out
the matrix element in (12),

1
2MN

Fγ+(x, ξ, t) = [H(x, ξ, t) − τE(x, ξ, t)]

+ i[s × q]z
1

2MN
[H(x, ξ, t) + E(x, ξ, t)] , (13)

where τ = q2/4M2
N . The first term is independent of the

proton spin, and is considered as the phase-space charge
density

ρ+(r, x) =
∫

d3q
(2π)3

e−iq·r[H(x, ξ, t) − τE(x, ξ, t)] . (14)

The second term depends on the proton spin and can be
regarded as the third component of the phase-space vector
current jz

+(r, x) =
∫

d3q
(2π)3

e−iq·ri[s × q]z
1

2MN
[H(x, ξ, t) + E(x, ξ, t)] . (15)

The E-term generates a convection current due to the or-
bital angular momentum of massless quarks and vanishes
when all quarks are in the s-orbit. The physics in sep-
arating f+

γ into ρ+ and jz
+ can be seen from the Dirac

matrix γ+ selected by the high-energy probes, which is a
combination of time and space components.

4 Quark charge distribution seen
through Feynman-momentum (x) filters

Once the GPDs are extracted from experimental data or
lattice QCD calculations, the phase-space charge/current
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Fig. 1. The up-quark charge density in the proton when Feyn-
man momentum is 0.01
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Fig. 2. Same as Fig. 1, the Feynman momentum is 0.4

distributions can be obtained by straightforward Fourier
transformations. Without a first-hand knowledge on the
GPDs at present, we may be able to learn some general
features of the phase-space distributions form GPD mod-
els.

The GPDs have been parametrized directly to sat-
isfy various constraints, including 1) the first moments
reducing to the measured form factors, 2) the forward
limit reproducing the Feynman parton distributions, 3)
the x-moments satisfying the polynomiality condition [5],
and 4) the positivity conditions [14]. Here, we use a new
parametrization without assuming factorized dependence
on the t and other variables [3].

In Fig. 1, we show the up-quark charge distributions
calculated from Hu(x, ξ, t) for various values of x = 0.01.
While the intensity of the plots indicates the magnitude
of the positive distribution, the lighter areas below the



X. Ji: Viewing the proton through “color” filters 27

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

x=0.70

Fig. 3. Same as Fig. 1, the Feynman momentum is 0.7

ground-zero contours indicate negative values. The image
is rotationally symmetric in the r⊥-plane (shown as the
horizontal axis only). At small x, the distribution extends
far beyond the nominal proton size along the vertical z
direction. The physical explanation for this is that the
position space uncertainty of the quarks is large when x
is small, and therefore the quarks are de-localized along
the longitudinal direction. This de-localization reflects a
very peculiar part of the proton wave function and shows
long-range correlations as verified in high-energy scatter-
ing. In a nucleus, the parton distributions at small x are
strongly modified because of the spatial 1overlap between
the protons. Figure 2 shows the charge density at x = 0.4
which is roughly round. At larger x, the momentum along
z direction is of order proton mass, the quarks are local-
ized to within 1/MN . The quantum mechanical nature of
the distribution becomes distinct as there are significant
changes in the sign at different spatial regions, shown in
Fig. 3. There pictures provide a fantastic visualization of
the quarks in the proton.

To summarize, we have introduced the concept of the
quantum phase-space distributions for quarks and gluons
in the proton. These distributions are measurable through
their relations to transverse-momentum dependent parton
distributions and generalized parton distributions. They
can be used to visualize the phase-space motion of the
quarks, and hence allow studying the contribution of the
quark orbital angular momentum to the spin of the pro-
ton. This work was supported by the U. S. Department of
Energy via grant DE-FG02-93ER-40762.
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